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Abstract

This study aimed to determine candidate miRNAs that could help to evaluate whether patients with hypopharyngeal squamous cell carcinoma (HSCC) would benefit from 
docetaxel, cisplatin, and 5-fluorouracil (TPF) induction chemotherapy. We downloaded the expression profiles of HSCC patients from the Gene Expression Omnibus 
database. miRNA profiles were analyzed via Principal Components Analysis (PCA), followed by Linear Discriminant Analysis (LDA). The Database Annotation for 
Visualization and Integrated Discovery tool was utilized for enrichment analysis; STRING and Cytoscape were used for network construction. We detected that hsa-miR-
15b-5p, hsa-miR-93-5p, and hsa-miR-130a-3p might act as crucial regulators in chemoresistance of HSCC, and they may play as prognosticators and therapeutic targets 
in the future.  
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Introduction

Hypopharyngeal carcinoma (HPC) arises from a subsite of the 
upper aerodigestive tract, which accounts for 0.8-1.5% of head and 
neck tumors with poor prognosis [1]. Hypopharyngeal squamous 
cell carcinoma (HSCC) is a histologically dominant tumor 
subtype, often diagnosed in the advanced stage, and the 5-year 
overall survival for all stages is approximately 30%. Induction 
chemotherapy with docetaxel, cisplatin, and 5-fluorouracil 
(TPF) has been developed and is considered an option to total 
laryngectomy, and this treatment has significantly enhanced the 
outcomes in HSCC to sustain the normal physiological function 
of the larynx [2-4]. Understanding the genetic differences among 
patients sensitive and resistant to induction chemotherapy will 
contribute to the knowledge of the molecular basis of HSCC. 
Identification of these highly relevant gene biomarkers can help to 
prevent unnecessary medication and may allow higher expectations 
of the desired individualized treatment.

Materials and Methods

Collection and inclusion criteria of studies
We searched the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm. nih.gov/geo/) by using the following keywords: 
“hypopharyngeal squamous cell carcinoma” (study keyword), 
“Homo sapiens” (organism), “Expression profiling by array” 
(study type). The inclusion criteria were: (1) expression levels of 
tissues from the experimental group compared to the control group, 
(2) adequate information to perform the analysis. This study is the 
descriptive cross-sectional study and the GSE85608-GPL21572_
series_matrix.txt.gz microRNA expression profile was downloaded 
from the GEO database which consists of 12 docetaxel, cisplatin, 
and 5-fluorouracil (TPF)-sensitive patients (aged 56.3±9.68 years) 
and nine resistant controls (aged 59.2±12.42 years). Receiver 
Operating Characteristic (ROC) analysis with a discriminant 
function score produced an areas under the ROC curve (AUC) of 
0.926 for separating chemosensitive from resistant samples, as seen 
in fig. 1. Minimal required sample size is calculated as 4 per group 
by using AUC value (0.926), Type I error (Alpha, Significance) 
value 0.05 (5%), Type II error (Beta,1-Power) value 0.20 (power 
is 80%) and null hypothesis value 0.5 [5]. This calculation shows 
that the number of the minimum sample size used in our study is 
sufficient.
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Data processing and Statistical analysis
miRNA tissue expression profiles of 12 TPF-sensitive patients 
and nine resistant controls were downloaded (GSE85608) from 
GEO database. miRNA profiles were analyzed via Principal 
Components Analysis (PCA), followed by Linear Discriminant 
Analysis (LDA) [6, 7]. PCA was performed to reduce the number 
of predictor variables for the differentiation of chemosensitive/
resistant samples. Then LDA was used for separation while 
maximizing the variation between the groups and minimizing 
separation within each group. The miRNA tissue expression 
profiles were analyzed for the statistical analysis. In our study the 
entire data matrix of GSE85608 microRNA expression profile was 
[21x4603]. Firstly, we performed a PCA to reduce the dimension 
of observed variables into a relatively smaller number of 
components while maintaining as much information or variance. 
The PCA was applied to 4603 microRNA expression profiles of 21 
centered and scaled (zero mean value and a standard deviation of 
one) data set. Whole data matrix “X” (P×M) contains the number 
of patients (P=21) and the number of microRNA expression 
profiles (M=4603). This matrix is separated into several principal 
components (PCs). The result of PCA is a product of PC scores 
“S” and PC loadings “L” matrices plus the residue “R”: S=X.
L→X=S.L’+R=s1l’1+s2l’2+s3l’3+……snl’n+R where X: (P x M) 
initial data matrix (21x4603); S: Weight matrix, eigenvalue, score 
[s1, s2, s3…, sn]; L’: Eigenvector matrix, principle component 
factor (loading), variance; [l’1, l’2, l’3…., l’n]; Residual matrix 
(containing noise) and n is the number of computed PCs. Secondly, 
the most significant (p<0.05) components are determined for the 
differentiation of samples. Then these significant PCs are used 
as the input variables of LDA. To prevent overfitting, the cross-
validation was performed by using the “leave-one-out” technique. 
The AUC as well as the sensitivities and specificities for the 
optimal cut-points are calculated using the discriminant function 
scores which is obtained by LDA. All statistical analyses were 
done by using open source R Studio software program with the 
version of ‘1.1.456’ [8].

Target Prediction
All miRNA names were standardized according to miRBase v.22 
via miRNAmeConverter available in Bioconductor R-package [9]. 
Then, MultiMiR package was utilized to predict targets of miRNAs 
that include 14 databases. This package was used to predict targets 
of miRNAs by DIANA-microT, ElMMo, MicroCosm, miRanda, 
miRDB, PicTar, PITA and TargetScan databases with the criterion 
of primary score listed in top 35 [10]. Targets of each miRNA were 
obtained by minimum one validated and three predicted algorithms, 
and these genes were chosen for the following analysis. 

Functional Enrichment Analysis
The Database Annotation for Visualization and Integrated 
Discovery (DAVID) was utilized for enrichment analysis [11]. 
We used the DAVID database to implement Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis on significant 
miRNA targets. The species was limited to “Homo sapiens” and 
the p < 0.05 cut-off was considered as significant.

Protein-protein Interaction (PPI) Network Construction 
The targets were mapped by STRING with a confidence score>0.7 
as a cut-off criterion to estimate the PPI information [12], and then 
interactions were viewed with Cytoscape [13]. The genes with a 

node degree>35 were considered as hub genes. 

miRNA-Hub Genes Network Construction
miRNA-hub genes regulatory network was constructed. The 
miRNAs with a degree>5 were considered to play an essential role 
in discriminating chemosensitive/resistance samples.

Results

Identification of Differentially Expressed miRNAs (DEMs)
PCA was performed by 1st finding the direction having the 
most significant variance (PC1: 21%), and after that finding 
following directions (PC2:8%, PC3:6%, PC4:6%, PC5-21 
collectively provides 5% or less of variance however yet 
contributed significantly). The paired two-sample t-test on all 
component scores showed that there were two (PC6 and PC13) 
most significant (p<0.05) components for discriminating samples. 
The p-values of these components were calculated as 0.007476 
for PC6 and 0.03598 for PC13. These two vital components 
were applied as the input variable of LDA. The cross-validation 
was conducted by using the leave-one-out technique to prevent 
over-fitting [14]. The Areas Under the ROC Curve (AUC) was 
computed, and the specificities and sensitivities for the optimal 
cut-points were determined with the discriminant function scores, 
which was acquired by LDA [15]. The classification based on the 
discriminant score gave a sensitivity of 100% and specificity of 
91.7% in discriminating chemosensitive/resistant samples with an 
accuracy of 95.2% and AUC of 92.6% (Figure 1). Top 100 DEMs 
were obtained from PC6 and PC13 loading scores.

Target Prediction
MultimiR acquired 1108 target genes according to our criterion for 
further analysis.

Functional Enrichment Analysis
For 1108 targets, we listed the top 10 KEGG pathways, which 
revealed that targets were mostly enriched in cancer (Table 1).

Table 1. Enriched KEGG pathways of top 10 differentially expressed genes 
obtained from DAVID 

TERM COUNT P-VALUE

Endocytosis 43 1.7e-9

Pathways in cancer 56 1.9e-8

Pancreatic cancer 18 4.2e-7

HTLV-I infection 35 3.0e-5

Melanoma 16 3.4e-5

PI3K-Akt signaling pathway 43 3.6e-5

FoxO signaling pathway 23 3.8e-5

Hepatitis B 24 4.4e-5

Proteoglycans in cancer 29 6.9e-5
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Signaling pathways regulating pluripotency of 
stem cells 23 7.5e-5

Figure 1. Receiver Operating Characteristic curve, comparing chemosensitive/
resistant samples

PPI network and identification of hub genes
The 1108 targets were utilized to set the PPI network by STRING. 
Consequently, we examined the STRING results by using 
Cytoscape, and 28 genes in the PPI network were recognized as 
hub genes (Figure 2). These hub genes included UBC, EGFR, 
MAPK1, RAC1, PTEN, HSPA8, BTRC, PPP2CA, SMURF1, 
RBBP7, SMAD3, STAT3, ITCH, CDC27, TGOLN2, CCND1, 
UBE2D2, ACTR2, PIK3R1, RAB5A, CUL3, VEGFA, CUL2, 
UBE2B, CLTA, UBE2V1, ESR1, and CUL5.

Figure 2. PPI network of 28 hub genes

Construction of miRNA-hub genes regulatory network
Twenty-eight hub genes and their corresponding ten miRNAs 

made 41 miRNA-hub gene pairs in the network. The relationship 
between miRNAs and hub genes are shown in Figure 3. miRNAs; 
hsa-miR-15b-5p, hsa-miR-93-5p, and hsa-miR-130a-3p are 
considered to be potential key miRNAs. 

Figure 3. miRNA-hub genes regulatory network. Blue corresponds to the hub 
genes and green to the miRNAs

Discussion

MicroRNAs (miRNAs) are small non-coding oligonucleotides 
which are capable of negatively regulating expression of mRNAs 
by inhibiting protein translation [16]. In recent years, miRNA 
profiling data sets have increased rapidly with the development 
of high-throughput techn iques, paving the way for bioinformatics 
studies. In this study, we detected hsa-miR-15b-5p, hsa-miR-93-5p, 
and hsa-miR-130a-3p as crucial regulators in chemoresistance of 
HSCC by using multivariate statistical analysis and bioinformatics 
approaches.  

hsa-miR-15b-5p was  shown to be  differentially expressed in head 
and neck squamous cell carcinoma and concluded that this miRNA 
might be a potential biomarker for individualized treatment in this 
disease [17,18]. In a study, the different miR expression profiles 
between laryngeal squamous cell carcinoma and the surrounding 
normal tissues were compared using miR array. Among 
differentially expressed miRNAs, miR-93 was upregulated [19]. 
In a multidrug resistance study, microarray analysis showed that 
miR-93 was downregulated in multidrug-resistant Hep2/v cells 
compared with Hep-2 cells [20] and also hsa-miR-130a-3p was 
shown to be relevant for a response to cisplatin in esophageal 
squamous cell carcinoma [21]. Moreover, hsa-miR-130a-3p was 
highlighted in hepatocellular carcinoma drug resistance [22,23], 
and in-vitro as well as in-vivo studies showed that overexpression 
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of this miRNA promoted the invasion, migration, and proliferation 
of nasopharyngeal carcinoma cells [24].

Conclusion

In conclusion, by using bioinformatics approach, we suggested that 
hsa-miR-15b-5p, hsa-miR-93-5p, and hsa-miR-130a-3p might act 
as crucial regulators in chemoresistance of HSCC, and they might 
serve as prognosticators and therapeutic targets in the future.  
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